®
X | | .
A ? i ¥ £ £ maer Ui
4 I k Institute for Al Industry Research, Tsinghua University
.

Knowledge Transfer Federated Learnin

"N\ .

y S i oy . \‘ {
N i .. it .'" v :.\‘y/
; Foy &= b '. R
Yang Liu ! - L N St
Institute for AI Industry Research (AIR) /, Tsinghua University . &%<
o | /P : : e A e Y (R
o T ‘ | /(/ 3 . ? % UL e o
1 iy .
® A \ | “ | RS . N
, 0Ly N\t 1 .;i ; ‘. I’ by Ak
v \ o0 [ R INCE T
.’j\ ® ) \ | i/ 3 | / ( . ; . ~
z /( 3 5




| .
@) AR 1 #A7miemLmsn
@9 I k Institute for Al Industry Research Tsinghua University

Outline

I. Knowledge Transfer (KT)- Federated Learning (FL)
II. Addressing challenges in KD-based FL

III. Vertical FL
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Cross-device vs Cross-silo FL

Google‘'s FML (Cross-device) Cross-silo Federated Learning

Data m 4 | Enterprise B

H. Brendan McMahan et al, Communication-Efficient Learning of
Deep Networks from Decentralized Data, Google, 2017

Cloud-Hosted Mobile Intelligence Federated Learning Federated Learning with Secure Aggregation

Enterprise A Enterprise C

Advances and open problems in Federated Learning,
Foundations and Trends in Machine Learning: Vol. 14: No. 1-2,

Keith Bonawitz et al, Practical Secure Aggregation for Privacy- pp 1-210

Preserving Machine Learning, Google, 2017
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: Horizontal, Vertical FL and FTL

Horizontal FL
] Federated Transfer Learning
Data from A : 8
'_ & !
Il © © i
] 1 g * Large overlap of features |
g N O '
g 53 of the two data sets | Federated
g Data from B i Transfer Learning
& | Data from A
: .
Features %
------------------------------------------------------------------------------------------------------------- Data from B
Vertical FL
Features
Data from A L 1 f 1
________________ °
2 Vertical Federated Learning arge overiap ot sample ;
. IDs (users) of the two data!
Data from B sets |
Features
Q. Yang, Y. Liu, T. Chen & Y. Tong, Federated machine learning: Concep{s and applications, ACM Transactions on Intelligent 4

Systems and Technology (TIST) 10(2), 12:1-12:19, 2019
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I Model Transfer and Knowledge Transter FL

[ Model Transfer FL ] [ Knowledge Transfer FL ]
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[ o Examples of Knowledge Transfer FL

* Knowledge Distillation(KD)-based FL

Vertical Federated Learning

Federated Transfer Learning
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I Addressing Privacy-Accuracy-Efficiency Trilemma
over various heterogeneity

Privacy
and

Security

Uninspectable,
heterogenous data and
devices

Compression

Accuracy P Efficiency

Quantization

Distributed Optimization
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Outline

I. Knowledge Transfer (KT)- Federated Learning (FL)
I1. Addressing challenges in KD-based FL

III. Vertical FL
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I KD-based Federated Learning

Transfer Knowledge instead of model parameters.

Advantages
v' Heterogeneity

v" Privacy
* Gradient Leakage

Consensus Consensus
Knowledge I Knowledge
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I FedGEMS: Federated Learning of Larger Server
Models

Client Model

_____________

Larger Server Model

_____________

S ————

Consensus | Consensus

I.....#ngwbdqﬁ....]“.Kn?mhdnﬁ.“...1
| |

serazazss
0 ®
g

—
81 s ope
T

80 T T T T
ResNet-20 ResNet-38 ResNet-56 ResNet-110

(a)
Model performances of different server model sizes.

S Cheng, ] Wu, Y Xiao, Y Liu*, Y Liu*, FedGEMS: Federated Learning of Larger Server Models via Selective Knowledge Fusion, https://arxiv.org/abs/2110.11027
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I Efficient knowledge transfer using unlabeled
public dataset

» Challenges

1. Knowledge from clients: limited quality
* The learning models of clients are small
* The training data size and categories of clients are limited

2. Knowledge fusion methods: limited efficacy
* Clients have diverse classification expertise on various labels of samples
* Knowledge quality provided by a client varies  from samples
* Unlabeled public samples lack ground truths to evaluate knowledge quality

11



. . N N IR R T LT
] FedHKT: A Hierarchical Knowledge Transfer DAIR Eimmes
Framework for Heterogeneous Federated Learning

Edge 1 knowledge Server-assisted knowledge selection Specialized classes

Aggregated| | Public | ‘ @ ‘ ‘ @
Edge 2 knowledge 7/;(_9_) knowledge | * | dataset |~ |_model ’ . ‘ e -|—) Global expert
Edge 3 knowledge[ ™ Weighted ensemble distillation @ @

1 Knowledge on shared public dataset 1
[ ittt el | r -------------- \lL —————————————— .- -----------------------------
: Specialized classes | Specialized classes ' Specmhzed classes
Edge model 1 . Edge model 2 . Edge model 3 ]_'_) Domain expert

/I\?i/l\ii/i

Client ) !

[ Client ] [ Client ][ Client ] [ Client ] [ Client ][ Client ] [ Client ] [ Client ][ ]
model 1) (model 2J (model 3 : model 4 lmodel 5 model 6/ : model 7 (model 8) (model 9
DO® | OD@@ | timitedqualry
Data Distribution - Data Distribution ' - Data Distribution

_____________________________J _____________________________J _____________________________JI 12
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| Evaluation Results

» Homogeneous model settings » Heterogeneous model settings
10V :
\,—a 20 _|:| Local 1 FedAvg [ FedProx 1 FedMD [ FedGKT [ FedDF [ FedET FedHKT % FedMD [ FedDF K< FedET X1 FedHKT 40 FedMD [ FedDF FedET X1 FedHKT]
N h k
=~ S S
> 60 S| G N S - —
S 40 goor | N N 330 N N
5 g g N
2 207 3 N 3
< r S 40p 220
0 Server model Client model (local data) Client model (global data) 20 10
(C) CIFAR-10. 50 clients Server  Client (L) Client (G) Server  Client (L) Client (G)
“w ’ (a) CIFAR-10, 20 clients (b) CIFAR-100, 20 clients
—~ [—J Local 1 FedAvg [ FedProx 1 FedMD [ FedGKT [ FedDF [ FedET FedHKT
e\i 40+ 20 |ZZ1 FedMD [ FedDF FedET KA FedHKT| 4 771 FedMD [ FedDF ESN FedET P57 FedHKT|
>30 S S
m N’ N
I > > 9
§ 20 § 60 \ 0§< § 30 . N N
10+ o )
< 0 [ ] gl \3‘1 3 20 :
Server model Client model (local data) Client model (global data) \:::j X
(d) CIFAR-100, 50 clients 20 Server 10gerver  Client (L) Client (G)
(c) CIFAR-10, 50 clients (d) CIFAR-100, 50 clients

* Significant accuracy gain for server model

* Improved personalization and generalization Efficient knowledge transfer betwe(?n
performance for client model server model and heterogeneous client

models 13
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Multimodal Federated Learning

With the increasing amount of multimedia data on modern mobile systems and [oT
infrastructures, harnessing these rich data without breaching user privacy becomes a critical

1Ssue.
@
o o
° admin ¢
[ J

model

server testing
Multimodal ,
. Book a flight @
Clients tomorrow night. f{ F E
{7
engineers @

& analysts
A train on a track federated t;:szo:{d
going through a city. e learning
. model
deployment

® Figure adapted from "Advances and open problems in federated learning."
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[ Challenges in Multimodal FL. (MMFL)

* Model drift: two new unprecedented heterogeneous factors arise from multimodal discrepancy,
modality gap and task gap.

* Existing MMFL methods all adopt FedAvg framework by using homogeneous models for each
modality, restraining the complexity of the global model to smaller scales.

* Existing algorithms for larger server model training rely on knowledge distillation through logit,
which only limited to classification tasks and not suitable for representation-based tasks like retrieval.

Private " Gty | ( GE=X2 '\ ¢/ @2 \
Img Clients MM Clients Txt Clients ( \I
fm————— EaqptarenpudpE A
. l , :
I Heterogeneous S ' e Book a flight I Cross-Modal |
: Data i I Img & Txt Encoder REREE :
. ! [
i : e
I Heterogeneous : mage Captioning :
: Architecture 1 1
0 . i |
' Model I | Public Multimodal Data ST :
| Drift | , :
oo oo o= | ) Twopeople | . :
|r Task Image I sitting at a table
| a3 Classifica Modal Classifica I with food.
: Drift I
|

tion Retrieval tion
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[ Contrastive Representation Ensemble and Aggreg |
(CreamFL, ICLR 2023)

CreamFL enables training larger server models from clients with heterogeneous model
architectures and data modalities through representation ensemble transfer on public data,
meanwhile effectively addressing the model drift challenge.

@

@ - (3 Global Representation Aggregation
- @ "  —
o | Global ==
I Global Img and TxtRep.
| —
. Txt Rep. | Server Aggregated T ?‘ 1 Local
: ~ | | A mmain on a | Local ImgRep. ——— , o [mgRep.
» Local Img Rep. track  going ————— Global-Local Contrastive [—
———————————— — _—__————————~ h h H . | —— : | —
I' MM Clients  Local Img Rep. ! frough a city Aggregated 1 Aggregation —————  Local
| ' Global Img and ! Local Txt Rep, e Ty Rep.
© o TxtR r ) e e
O o X [ Image Text Global
: : @ Iine Rep,
1 e al Txt Ren. | | Encoder ] ( Encoder J, . mg Rep. 1
| . > < —
1| A train on a |:||:| : Local Img and : ¢ : | L :
i Txt Rep. oS- - - - T - - - - - ---—-------------—-=
! g}aCk " gong e ! Xt Bep : L ' [ Global Img (1) Local Training Regularization Global Txt
'\ rough a city. e | . 1 1 Rep. e Rep. I
j======z==z=zfz=zf=z=zz=z=z=z==z{ Global Img and | | 1 L L —— Inter-modal :
. S
I Txt Clients Local Txt Rep. 1 TxtRep. Global Img Global Txt | | —— Contrast - = ————— =~ Contrast ——————
e 1 | - S~
! Please book a : > Rep. Rep. I | — Local Img Rep. = DT e |
: flight tomorrow 1 Local Txt Rep. | I:Kl:l~~ - % I
: morning e , i L N Local Txt Rep. - e !
1 ’ | E—— — ‘*T\ | -7 - [—
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1
I CreamFL: Global Contrastive Aggregation (GCA)

For global representations aggregation, we design a global-local cross-modal contrastive score for
weighting purposes. The score for kth image of cth client is computed as:

(kie)' . 4 (k)
eXp (zloczl °tglobal>

T .
S g esp (i) -t

(kc) _

= log

We assign a higher weight to the local representation zl(k C{ that better matches its counterpart’s global
representation ;.. (nominator), and less approximates other texts t({)b LjFEk
. global’
(denominator).
(3) Global Representation Aggregation
/T
Global
| ——
TxtRep.  pom
| I— | I—
Agwregaed =
Local Img Rep. —————— . ————— ImgRep.
—————1 Global-Local Contrastive —————
1 Aggregation 1
Aggregated — — Local
Local Txt Rep. " =
Global | I—

ImgRep.
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[ ]
Experiments
Table 1: Comparison of CreamFL with baselines on image-text retrieval task.
Settings: Types Methods 1K Test Images
e Public dataset: a subset of 2tR@1 i2tR@5 i2tR@10 RiR@1 RiR@5 ©RiR@10 R@1.sum
COCO w/o larger  FedAvg 2938  59.84 73.52 23.71 56.86 72.95 74.20
server model  FedloT 2862  59.90 73.82 2336  58.14 74.55 72.15
 Private datasets: CIFAR-100, FedMD 3288 6664 8002 2826 6423 7958 86.07
: FedET 3342 67.28 80.20 2829  64.56 79.62 87.17
AG_NEWS, Fllcker.3 Ok w/larger ~ FedGEMS 3444 67.52 80.50 28.73 64.82 80.00 88.92
e (Clients: 10 image ChentS, 10 text servermodel reamFL+Avg 34.01 67.56 79.72 28.52 64.36 79.57 88.13
. : : reamFL+IoT 3390  66.28 80.18 2844  64.70 80.03 88.05
clients, 15 multimodal clients. CreamFL (ours)  35.76 68.28 81.52 29.06 65.19 80.36 92.43
10 of them are randomly chosen Types  Methods 5K Test Images
to participate in each round 2t R@1 2t R@5 2t R@10 t2iR@1 2iR@5 2i.R@10
i w/o larger  FedAvg 11.86  31.46 44.08 9.25 26.82 39.02
training. server model ~ FedloT 1140  29.62 43.16 8.77 26.88 39.56
FedMD 1324 3550 48.90 11.69 3258 46.46
CreamFL achieves noticeable FedET 13.68 36.62 49.70 11.78 32.73 46.26
. w/larger ~ FedGEMS 13.94 3732 50.78 11.81 33.01 46.54
performance improvement over all  servermodel  reamFL+Avg 1392 3660 4979 1168 3278 4629
reamFL+IoT 1406 36.58 49.14 11.65 33.01 46.64

baselines in all settings. CreamFL (ours) ~ 15.08 ~ 37.86 5156 1253  33.63  47.23




| Experiments: Ablation

Ablation Studies for different components

of CreamFL:
Methods R@1_sum
reamFL+Mean 85.75
reamFL+Avg 88.13
reamFL+IoT 88.05
reamFL+GCA 90.03
reamFL+GCA + LCR.inter 01.98
reamFL+GCA + LCR.intra 90.84
CreamFL (reamFL+GCA+LCR) 92.43

GCA:global-local contrastive aggregation
LCR: local contrastive regularization

reamFL: vanilla representation ensemble (CreamFL without ‘C’)

R@1 sum

X [ | M
A ? (EZEE L T Bk
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Trade-off between communication and

performance:
64 128 256 384 512
100 I L ! 1 )
93.06 92.54 92 44
- —u
90 1 86.19 -
8520 81.22 -~
i ,X’
0 - FedAvg
70.35 .-~
707 e FedloT
60- 55.65,."
50 7 -=¢- Num. of pub data (dim 512)
41.22 // —#— Dimension (50k pub data)
40 - X
10k 20k 30k 40k 50k

Communication cost (higher on the right)



l  Qualitative Study of Model Drift

Representations of 250 randomly chosen images from COCO are visualized

® Multimodal client

.41"*

* * @ Multimodal client
A Image client 1 b y ¥ . * A Image client |
* * Image client 1 ad . * * * Image client |
] ﬁ A * W% o v @
* x “t A o ® °
% 4 A * e 00
¥ o’ “s Yo ‘ g O:o
N ° .”.o'.o o ad a F—_— .
A © 0229 Aba ** gy ©0°
N L A o : e® o
® .. A * ®
& FRX . o
A A ¢ {. A Aok °e ° ® 9
A% 8, ® g @ ®°e * o
ey TS * °
L efa. o
402 % o
(a) Clients trained under vanilla reamFL+Mean

Qiying Yu, Yang Liu*, Yimu Wang, Ke Xu, Jingjing Liu*

(b) Clients trained under CreamFL

AI? rﬁ % / f%. F‘lLﬁﬁn[‘;fy

Model drift exists between two modality-identical text clients (blue and green), while this drift is
much smaller than the gap between multimodal and uni-modal clients (red v.s. blue+green)

, Multimodal Federated Learning via Contrastive
Representation Ensemble (ICLR 2023, code: https://github.com/FLAIR-THU/CreamFL)



Deep Leakage in Model Transter FL

(a) Original 20x20 image of haud-
written number 0, seen as a vector
over R fed to a neural network.

Fig. 3. Original data (a) vs. leakage information (b). (

Recovered image using
400 10285 (3.89%) gradients (see
Sect.3, Example 2). The difference
with the original (a) is only at
the value bar.

(c) Recovered image using
400/10285 (3.89%) gradients (see
Sect.3, Example 3). There are
noises but the truth label 0 can
still be seen.

c) from a small part of gradients in a neural network.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang,
and Shiho Moriai. 2018. Privacy-Preserving Deep Learning via
Additively Homomorphic Encryption. IEEE Trans. Information
Forensics and Security, 13,5 (2018),1333-1345

Z3
AI? BeFm R 3R
Institute for Al Industry Research, Tsinghua University

Iters=0 Iters=10 Iters=50 Iters=100 Iters=500 | Melis [27] | Ground Truth

Figure 3: The visualization showing the deep leakage on images from MNIST [22], CIFAR-100 [21],
SVHN [28] and LFW [14] respectively. Our algorithm fully recovers the four images while previous
work only succeeds on simple images with clean backgrounds.

Ligeng Zhu, Zhijian Liu, Song Han, Deep Leakage from Gradients,
Neurips 2019

d “
results of independent opunuzanon processes

“original

Hongxu Yin et al , See through Gradients: Image Batch Recovery via
GradInversion, CVPR 2021

21


https://arxiv.org/search/cs?searchtype=author&query=Zhu%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Liu%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Han%2C+S
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Will there be deep leakage from logits in FedMD-like
schemes?




inci @) AR 117 feserwwss
E Two necessary principles to attack FedMD s Sl e

e Gradient-free

- Since gradients are not shared in FedMD, our attack cannot use gradients-related
information

* Knowledge-decoupling
- Local models are trained on both private and public datasets,

- Our attack should recover only private data. (In the previous example, we do not
want masked face)

None of existing methods meets both principles.



] Paired-Logits-Inversion Attack (PLI,CVPR’23)

1. Train an inversion NN on public data

- Input is the predicted logits of server-side
and client-side models on the public data

- Qutput is the original public data

2. Estimate output logits of server-
side and client-side models on the
target private data

3. Feed those estimated logits to the
inversion NN to generate original
private data

4. We also use prior generated from
the public data for regularization

Hideaki Takahashi, Jingjing Liu, and Yang Liu, Breaching FedMD:

AR 71 rzmEn s
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Image Recovery via Paired-Logits Inversion Attack (CVPR 2023)
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1.Server-side and client-side logits are

L= fo(WO;fU?), lf = fk(WMmg)

2. Next, we train an inversion neural network G with

min » _[|Go (P, P -) — @Mz + |Go (0] 7 P -) — Zill2

, Where ¢

pY _ = softmax(l?,7), pr_ = softmax(l¥,T)
- the first term 1s reconstruction error .
- the second term 1s regularization term



PLI - Estimate output logits of private data using

Confidence Gap Optimization

The quality of recovered image 1s
Q=) = pj . + 1}, +aH (D ;)

Q 1s maximized with the bellow logits

i |
~k .
pQ,T { 0

Then, we can estimate the private data with

(u=

(u

g, =
v/

e (u=1J)

irve (W#9)

arg max Q(z%).= G5 (99 ., % ;)

0

k
-
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[ Client - Local [ Server - Local ... Client - Public i Server - Public

LAG LFW FaceScrub

. 0.4-
0.3-
0.2-
0.1- l
0.0- X :
0 1 2 3 “ 5
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0 1 2 34 5 6 =t g 1 2 3 ! 5
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Entropy Entropy Entropy

Figure 3. Confidence gap between the server and the client under
FedMD setting on public and private data. This figure represents
the normalized histogram of entropy on public and local datasets
and estimated distribution. Lower entropy means that the model
is more confident. Client consistently has higher confidence on
private dataset than server, indicating a significant confidence gap.



Prior Data Estimation

1.Naive Approach - same prior for all labels

)zl
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f.
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1.GAN-based Translation Model - prior per

label
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l Results

1. The attack 1s success when SSIM between the reconstructed image and the
average private image of the target label exceeds SSIM between any

average private/public images of other labels.
2.0ur PLI outperforms the prior method in most settings.

Dataset FaceScrub LAG LFW Plvate
Scheme DS-FL FedGEMS FedMD | DS-FL FedGEMS FedMD | DS-FL FedGEMS FedMD
TBI(K=1) | 87.0 1.0 92.5 70.0 0.5 16.5 73.5 2.5 2.0 LAG
PLI(K=1) | 915 29.0 94.0 71.0 17.0 60.0 99,5 91.0 99,5
TBI(K =10) | 2.0 0.5 7.0 6.5 0.0 0.0 17.5 95 10.0
PLI(K =10) | 625 20.0 74.5 15.0 26.5 63.5 15.5 71.5 79.0

Table 2. Results on attack accuracy (%).

FS

Hideaki Takahashi, Jingjing Liu, and Yang Liu, Breaching FedMD: Image
Recovery via Paired-Logits Inversion Attack (CVPR 2023, code available at

https://github.com/FLAIR-THU/PairedLogitsInversion)

t represents the number of communications.
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Outline

I. Knowledge Transfer (KT)- Federated Learning (FL)
II. Addressing challenges in KD-based FL

I11. Vertical FL



| Problem Definition for VFL

The collaborative training problem is formulated:

min £(©; D)
an L\

Assumptions:

s 1

N

[ | -
A ? (EZEE L T Bk
I k Institute for AI Industry Research, Tsinghua University
A

_____________________

L AP NS ———

federation layer: D B8

GF denotes local feature transformation function that is
unknown to other parties

* Features of the same sample are distributed across K parties.

* Samples referring to the same entity are aligned (by encrypted entity alignment techniques)
* Each party owns one part of a complete model
* Only one party has the label (the Kth party, “active’ party)

Constraints:

* Model parameters and data stay local



Local-Modcl

ID
u1
u2
u3

Passive Party 1

u1
uz

X1

G,

A

X1

A

X2

Global Module
5 < N
F3
A
Local-Model
Intermediate Results Exchange Intermediate Results Exchange
— -
I s
A
; : " ; D X3 | Y ‘ y B :
Privacy-Preserving Entity Alignment - Privacy-Preserving Entity Alignment
e » U1 .. e |q
. U2 ..
A

g ID X3 Y
Ul | e .-

el Q) =y

Confidential Info. Exchange u4

Active Party 3

4—@33

Conlidential Info. Exchange

Training Vertical Federated Learning

Local-Model

7

A

X4 X5
o
U2

ID X4 X§
U1
U2
us

Passive Party 2

[ | -
A ? (EZEE L T Bk
I k Institute for AI Industry Research, Tsinghua University

F(O;x,4) = L(Fr (Wr; G1(Xi1:601)5+ G (Xi i, 0K)) s Vi k)

Algorithm 1 A General VFL Training Procedure.
Input: learning rates n; and 7,
Output: Model parameters 601, 03 ... Ok, YK

1: Party 1,2,...,K, initialize 61, 09, ... Ox, Vk.
2: for each iteration 7 = 1,2, ... do

3:  Randomly sample a mini-batch of samples x C D

4:  for each party k=1,2,...,K in parallel do

5: Party k computes Hy = Gr(Xg, Ox);

6: Party k sends { Hy} to party K

7. end for . '

8  Active party K updates ¢} 1= Yy — 771%;

9:  Active party K computes and sends % to all other parties;

10:  for each party k=1,2,...,K in parallel do

11: Party k computes Vj, £ with Equation (6);
12: Party k updates Ofl =0 — 12V, L

13:  end for

14: end for

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814
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aggVFL

aggVFL,
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Passive X, G2
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Party 3
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Party 2

Active

Party 3
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~ splitVFL
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%
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T splitVFL,
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Passive
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Passive

Party 2

Active
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Active
Party 3

AR

H;
X1~ 61

H,
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] FedBCD: A FedAvg-like algorithm for VFL

FedSGD FedBCD
Party B Party A (has y) Party B Party A (has y)
Select mini-batch | |Etsr21§d_ia£e:C_OTF_>0_n§ﬂ£_9 . Select mini-batch Intermediate_component_0
samples resooooooooooooooooooog samples _4- ——————————————————————————————————————————— &
Intermediate_gradient_0 Intermediate_gradient_0
local|iteration local jiteration Q iterations Q iterations
Intermediate_component_1 Intermediate com
. |____Intermediate_component . L ponent_1
Selectmini-batch | == 777777777777 e Select mini-batch ~ |z === ========-===-=--=---- >
samples Intermediate_grad_1 samples Intermediate_grad_1
local|iteration local jiteration Q iterations Q itefations
Select mini-batch _——— _In_te_rr:ue_di_a te_component2 _ _ _ N o Intermediate_component_2
samples e ___1 Select mini-batch  |================—-—-—-—-—-- >
Intermediate_grad_2 samples i I-nt_er-m_eai;t; ;r;d_Z- ______

«  Each communication round, each party performs multiplg local
iterations,

*  Each local iteration, each party locally computes gradient based on
its own data and (staled) intermediate components from other
parties in the most recent synchronization.

* Communication at every round
* expensive especially when privacy-preserving protocol is applied.

Y. Liu,. Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong, Q. Yang, FedBCD: A Communication-Efficient Collaborative Learning Framework for Distributed
Features, IEEE Transaction on Signal Processing, 2022
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FedBCD: Main Results

MIMIC-LR ~ MNIST-CNN
AUC 84% AUC 99.7%

Algo. Q rounds Q  rounds * The number of communication rounds required to reach €
FedSGD 1 334 1 46
FedBCD 5 71 3 16
so0 | 52 || s 8 T K1/2
FedBCD-s 1 407 1 48 — =0 (7> )
5| 74 || 3 15 Q Sti2¢3/2
50 52 5 9
ABLE 1
NUMBER OF COMMUNICATION ROUNDS TO REACH A TARGET AUC FOR
REREED - ERRER-SaID I e O IR A ML It is the first time that such rates have been proven for any
algorithms with multiple local steps designed for the feature-
Credit-FTL .. .
AUC _ Algo. _Q R _ comp. comm. tofal partitioned federated learning problem
FedSGD 1 17 11.33 11.34 22.67
70% FedBCD 5 4 13.40 2.94 16.34
10 2 10.87 2.74 13.61
e (ol & 158 2T | T it Compare with vanilla BCD, FedBCD saves communication by
Wil 4 | 2opi ] 29 | 2000 having multiple local updates
FedSGD 1 46 32.20 30.69 62.89
80% | FedBCD 5 13 43.52 9.05 52.57
10 7 41.53 5.12 46.65
ABLE II

NUMBER OF COMMUNICATION ROUNDS, COMPUTATION, COMMUNICATION
AND TOTAL TRAINING TIME (MINS) TO REACH TARGET AUC FOR FEDSGD
VERSUS FEDBCD-P.
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Security Protocols of VFL

» Basic Protocol (P-1): Keeping Private
data and models local.

oI P-1 P2\ P-3\ P4
Xay
« Standard Protocol (P-2): Protecting
Qctive Sy ¢ Exchanged Intermediate Results
| Rl b o et etk v

Passive Party B

I-IR —; 9s —jrma a

T-IR, I-IR

 Enhanced Protocol (P-3): Protecting
Entire Training Protocol

FaluG

« Strict Protocol (P-4): Protecting

T-IR: Transmitted Intermediate Results (e.g., local model outputs and backward gradients) Training Protocol and Results

I-IR: Internal Intermediate Results (e.g., local trainable model parameters/gradients)

* Relaxed Protocol (P-0): Nonprivate
label or model.

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814
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Attacks and Defenses

Data Reconstruction Attacks Backdoor Attacks

Feature Reconstruction

Active Party

Intermedia
Result

Non-targeted
Backdoor

. Passive Party \  Model
\
Gradient \ Completion

R L
Inversion | Auxiliary o=t ‘é‘.
I 2 » “horse”! .
\ Il_abeled Data PRaiiashe Aé‘ Targeted | NS 8 Triggerec
,' Label Inference Backdoor ‘

-~

I
“horse”!
7

Label Inference =
. Trigger
Passive Party
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VFL Against [| Attacking Auxiliary
Attacking Method Setting Model Protocol Phase Requirement
Direct Label Inference (DLI) [19], [108] | aggVFL NN | P41 Training -
Norm Scoring (NS) [109] | splitVFL NN | P-1 Training -
Label Direction Scoring (DS) [109] > splitVFL _ NN P-1 Training -
Inference | Residual Reconstruction (RR) [110] aggVFL LR P-2 Training -
Attack Gradient Inversion (GI) [108] aggVFL NN P-2 Training -
Gradient Inversion (GI) [111] splitVFL NN P-2 Training | Label Prior Distribution
Passive Model Completion (PMC) [19] splitVFL NN P-3 Inference Labeled Data
Active Model Completion (AMC) [19] splitVFL NN P-3 Inference Labeled Data
Binary Feature Inference Attack (BFIA) [112] splitVFL NN P-1 Training Binary Features
Reverse Multiplication Attack (RMA) [113] aggVFL LR P-2 Training | Corrupted Coordinator
Protocol-aware Active Attack(PAA) [114] aggVFL LR P-2 Training -
Feature Reverse Sum Attack (RSA) [113] aggVFL GBDT P-2 Training -
Inference | Equality Solving Attack (ESA) [100] aggVFL LR P-0(g) Inference -
Attack | Path Restriction Attack (PRA) [100] aggVFL Tree P-0(g) Inference -
Generative Regression Network (GRN) [100] aggVFL NN P-0(g) Inference -
White-Box Model Inversion (MI) [101], [102] aggVFL & splitVFL_ | LR & NN P-0(g) Inference -
Black-box Model Inversion (MI) [101], [102] aggVFL & splitVFL_ | LR & NN P-1 Inference Labeled Data
Catastrophic Data Leakage in VFL (CAFE) [23] aggVFL NN P-0(g) Training -
VFL Against # of Attacking Auxiliary
Attacking Method Setting Protocol Classes Phase Requirement
Label Replacement Backdoor by aggVFL P2 >S9 Training ll:;;celle(a)?tc?;ai
Backdor Atack |- Eraiens (L) 11 i L pusiatle onine
ek (ADD ] | VLR/SpHtVEL. ||PO@)/P1| 22 | Inference | e s ;Z rtr;’m E] E]
Non-targeted Adversarial attack [24], [140] splitVFL/aggVFL P-1 >2 Training -
Backdoor Attack Missing attack [24] splitVFL /aggVFL P-3 >2 Training -

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814
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] Summary of Defenses

Cryptographic Defense Emerging Defense

Defense VFL Defense Require Adversarial
Work Settins Model Scheme Protocol Party | Coordinator Assumption
GasconLR [17] ageVFL LR GC+SS P-3 > 2 v SH I Defense I VFL I I Against Detending
HardyLR 19,1] ageVEFL LR HE P-2 >2 v SH Work Setting Model Defense Scheme Attack Party
BaiduLR [107] aggVFL IR e P2 =32 X SH MARVELL[98] || splitVFL, | NN Add Noise NS, DS_|_Active party
o 7 O —~ 5 Max-Norm|[98 splitVFL,. NN Add Noise NS, DS Active party
SecureLR [108] aggVFL LR HE+88 p-2 22 ¥ SH Defenses against [ CAE [30] ageVFL | NN HE Disguise Label | DLL MC | _Active party
CAESAR 19 agegVFL LR HE-SS P-3 = X SH Label Inference DCAE [30) VEL NN HE 1 Disguise b ve | aca
HeteroLR [97 aggVFL LR HE+SS a:P-3, p:P-4 = X SH Attack ¢ 268 i Label + DG 3 Pediszid
T T TN o 3 PELoss [113] splitVFL, NN Potential Energy Loss MC Active party
; FedV [21] asg\'FL LR/SVM FE P-2 a2 s S_H dCorr [101] split VFL, NN Minimize Correlation SA Active party
SecureBoost [15] || aggVFL XGB HE P-2 =2 X SH RM [114] ageVFL | LR HE Random Mask RR Active party
SecureBoost+ [33] || aggVFL XGB HE P-2 >2 X SH Def pRm— FG [28] splitVFL NN | Random Fake Gradients | CAFE | Passive party
SecureXGB [35] aggVFL XGB HE-+-SS P-3 = X SH o TR N Df;;\[}"ll (l);lSI SPlli_tt\\"/Fl‘_" Iff : ]3: Adv’e\flsuial 'l;rdninins B[gIIA gmfze P:rrt.v
MP-FedXGB [38] || ageVFL | XGB S5 P-3 >2 v SH Attack BTN L) . M - Roesquanace 2y party
SecureGBM [34] aggVFL LGBM HE P-2 — X SH MGD [104] aggVFL LR HE+DP PAA Passive party
23 2 RF / T SH, < K-1
Pivot [39] aggVFL GBDT HE-+SS P-3 >2 X T et
Enhanced SH, < K-1
: aggVFL DT HE-+SS P-4 >2 x bl ) , _
Pivot [39] colluded parties Table 9: Summary of defense strategies for defending against backdoor attacks.
FedSGC [109] aggVFL,. GNN HE P-2 =2 X SH
ACML [110 splitVFL, NN HE P-1 =2 X SH 7
Defi VFL Defi Against
PrADA [79 splitVFL | NN HE P-1 >3 X SH Work || Setting Sohos Abtack
BlindFL [96] split VFL NN HE+SS a:P-2. p:P-4 =2 X SH DPI30 agzVFL Add Noise Mrgeton
?Pv‘[:[“ 77 855\':? L NN HE P-2 =2 X SH GS [30 aggVFL Sparsify Gradient Targeted
SETL [77] aggVEL NN S8 P-3 =2 X SH CAE [30] || aggVFL HE Disguise Label Targeted
SEFTL [78] ageVFL | NN | HE4SPDZ P-3 ! x e DCAE [30] || agaVFL HE { Disguise Label+ DG Targeted
majority RVFR [29] || splitVFL| Robust Feature Sub-space Recovery Targeted /Non-targeted
N-TEE [111] agegVFL XGB TEE P-3 >2 X SH

Available online at

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814
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l Applications

Major Applications Open-Source Projects

4 N e )

* Recommendation systems and

Advertising * PyVertical
e Finance * FedLearner
e FedML
e Healthcare
e Fedtree
 Wireless Communication e PaddleFL

- A B
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l Challenges

* A substantial gap between the defense goal of VFL research and practice.
* Research: achieving state-of-the-art performance on a targeted attack type.
* Practice: effective yet simple defense solutions to thwart all possible
attacks.

* Lack a light-weight and unified VFL framework designed for rapid testing new
attack and defense algorithms
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VFLAIR
GitHub Link: https://github.com/FLAIR-THU/VFLAIR

Recommendation

Evaluation
- - Attack Performance (AP) A e.g. “MID has the
E\K/Tll:?tlon - Main Task Performance (MP) A # gefekr.lse highest DCS, so is
ClNCS  Defense Capability Score (DCS, T-DCS, C-DCS) ~ “x ./ anking  the most effective”
11 - Label Inference (NS, DS, DLI, BLI ] - Adding Gauss_ian/LapIaclel Nqise (DP-G, DP-L)
Attack PMC AM’C) ’ ’ ’ VEL e - Gradlept Sparsification (GS)
- Feature Reconstruction (GRN, TBM) traini - IR [PERIT (26T
\g"_ - Targeted Backdoor (LRB) raining ‘ - distance Correlation (dCor)
- Non-targeted Backdoor (NSB, MF) - Confusional AutoEncoder (CAE, DCAE)
9 ’ - Mutual Information Defense (MID)
VFL Setting
2 2
D th ¢ - Diabetes, Cretio... - Logistic Regression i Partglon %ﬁ:rgtrir(]')l:'n-
atase 4
- MNIST, CIFAR10&100 XGBoost, Random p‘:] - _ aggVFL - FedSGD
- NUSWIDE Forest : 1 1
- News20 - MLP, CNN, LeNet, 7 SRIES Yyt - RecEes
- Cora £ S5 ResNet, GON, LSTM 2 & Qter
trainable trainable
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| Evaluation Module

* Defense Depth
1) Attack Performance (AP), Main Task Performance (MP)
- ideal Attack Performance (AP*), ideal Main Task Performance (MP*)
2) Defense Capability Score (DCS)

1.0

Y Ideal Defense

Attack Performance (AP)
o o
[e)] [o0]
o
%

1 B 1

DCS = —
L+ D(df,df*) 1+ +/(1— B)(AP — AP*)2 + 3(MP — MP*)2

o
H
1

e Defense Breadth

3) Type-level Defense Capability Score (T-DCS) 02 & .
4) Comprehensive Defense Capability Score (C-DCS) [+ [ [ T /g?P ]
0.0 & [ P}

' Main Task Performance (MP)

GitHub Link: https://github.com/FLAIR-THU/VFLAIR
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I FedVision

An online visual object detection platform powered by federated learning

Local epoch
Globat epoch Tt
Wait time —
1EESEL

o)

' Conference on Innovative Applications of
o Artificial Intelligence

S ; e
tj fl_server STask)Ian gery, g @ 5
Bl o ciene D) esplorer - Model database February 9-11, 2020+ New York, New York, USA

\ Local training Image annotation SPIC /

The Association for the Advancement of Artificial Intelligence
(A2A41)
recognizes the work of

Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu,
Yuanyuan Chen, Lican Feng, Tianjian Chen, Han Yu, Qiang Yang

Advantages: and the A1 Application entitled:
. . FedVision: An Online Visual Object Detection Platform
® privacy Powered by Federated Learning

® Efficiency improved by ~ 200 times
® reducing labor cost by 60%




