

Knowledge Transfer Federated Learning

Yang Liu Institute for AI Industry Research (AIR), Tsinghua University

Outline

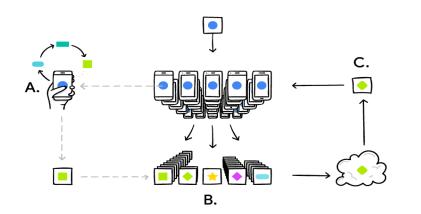
I. Knowledge Transfer (KT)- Federated Learning (FL)

II. Addressing challenges in KD-based FL

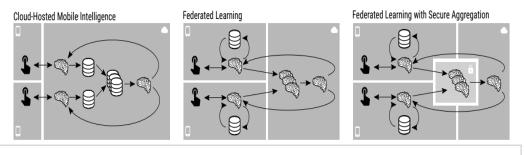
III. Vertical FL

Cross-device vs Cross-silo FL

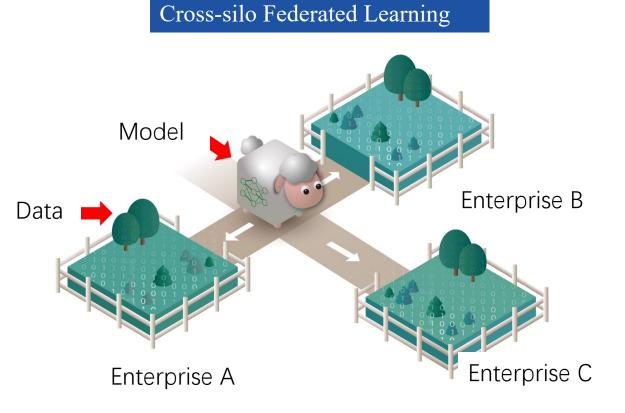
Google's FML (Cross-device)



H. Brendan McMahan et al, Communication-Efficient Learning of Deep Networks from Decentralized Data, Google, 2017

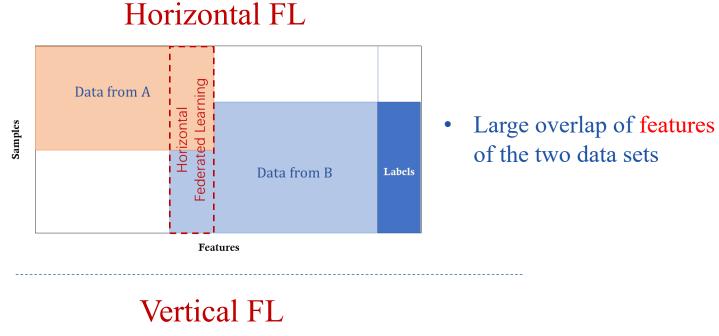


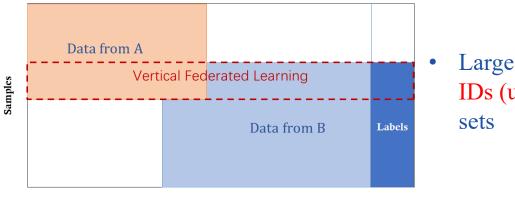
Keith Bonawitz et al, *Practical Secure Aggregation for Privacy-Preserving Machine Learning*, Google, 2017



Advances and open problems in Federated Learning, Foundations and Trends in Machine Learning: Vol. 14: No. 1–2, pp 1-210

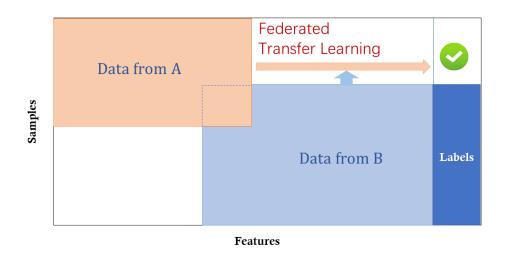
Horizontal, Vertical FL and FTL





Large overlap of sample IDs (users) of the two data sets

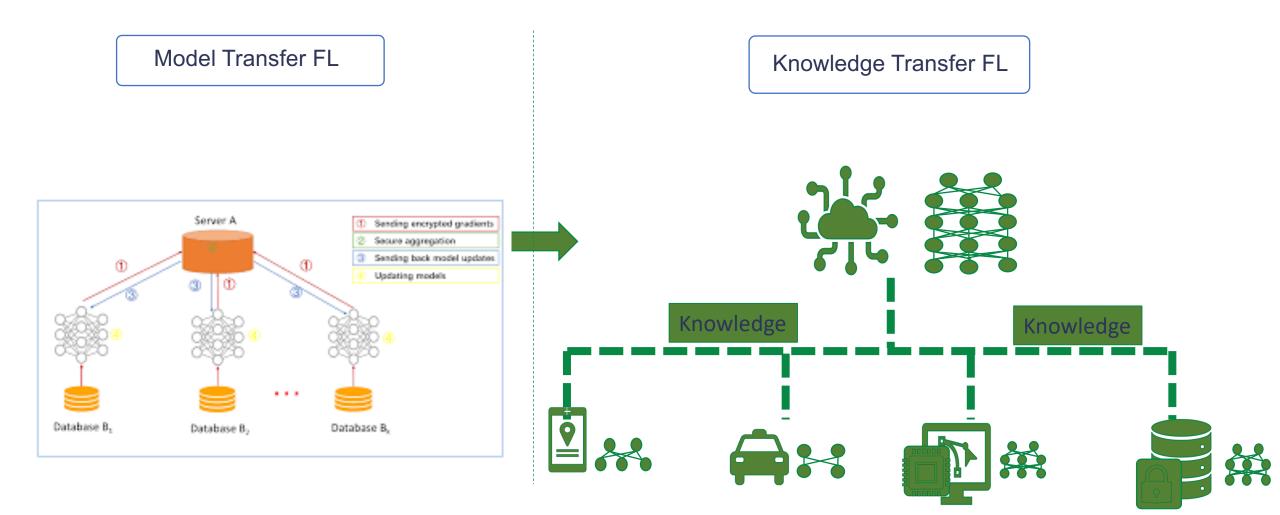
Federated Transfer Learning



Features

Q. Yang, Y. Liu, T. Chen & Y. Tong, Federated machine learning: Concepts and applications, *ACM Transactions on Intelligent Systems and Technology (TIST)* **10**(2), 12:1-12:19, 2019

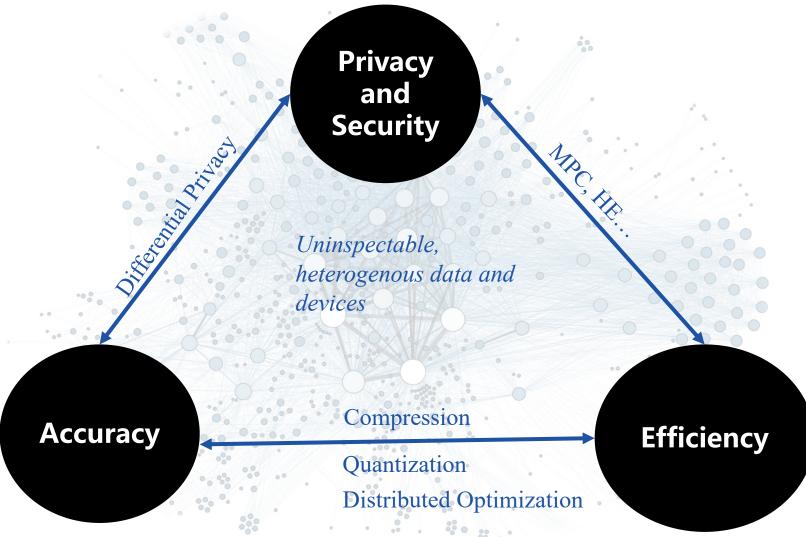
Model Transfer and Knowledge Transfer FL



• Examples of Knowledge Transfer FL

- Knowledge Distillation(KD)-based FL
- Vertical Federated Learning
- Federated Transfer Learning

Addressing Privacy-Accuracy-Efficiency Trilemma over various heterogeneity



Outline

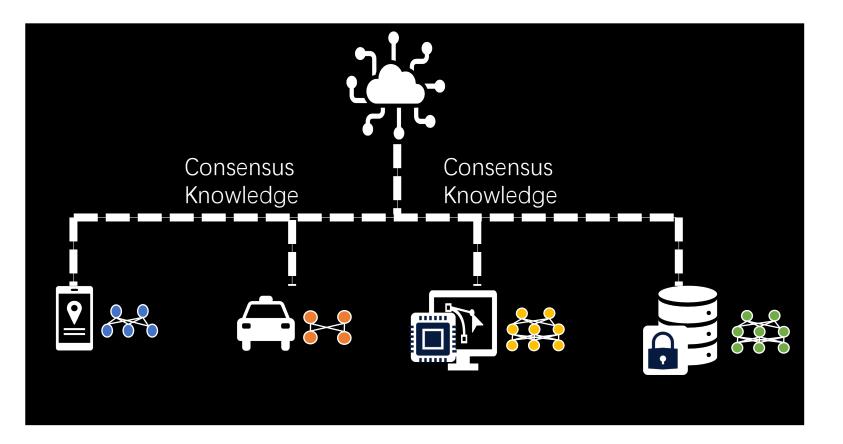
I. Knowledge Transfer (KT)- Federated Learning (FL)

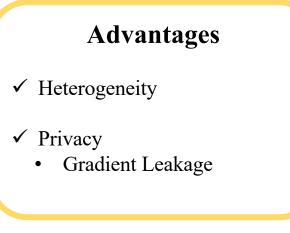
II. Addressing challenges in KD-based FL

III. Vertical FL

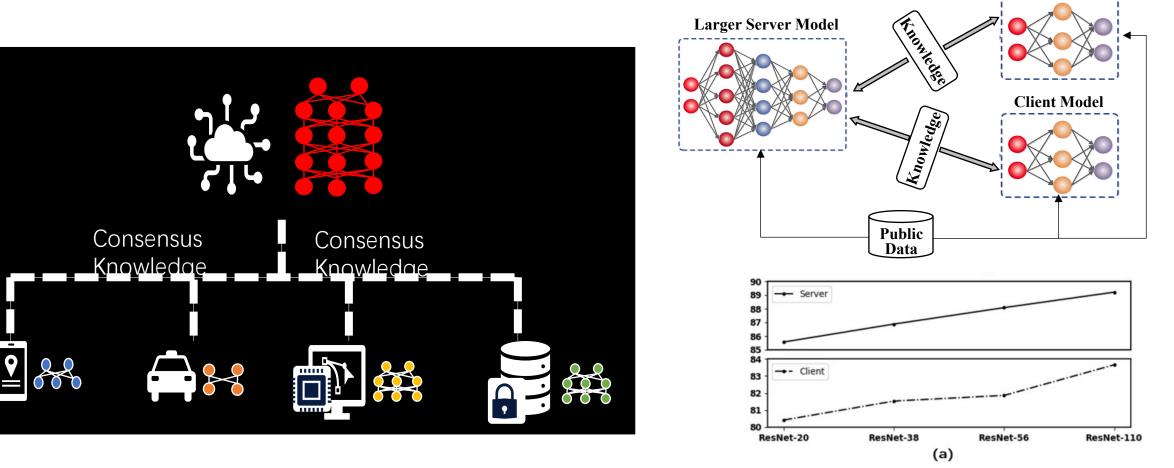
KD-based Federated Learning

Transfer **Knowledge** instead of **model parameters**.





FedGEMS: Federated Learning of Larger Server Models



Model performances of different server model sizes.

Client Model

S Cheng, J Wu, Y Xiao, Y Liu*, Y Liu*, FedGEMS: Federated Learning of Larger Server Models via Selective Knowledge Fusion, https://arxiv.org/abs/2110.11027

Efficient knowledge transfer using unlabeled public dataset

> Challenges

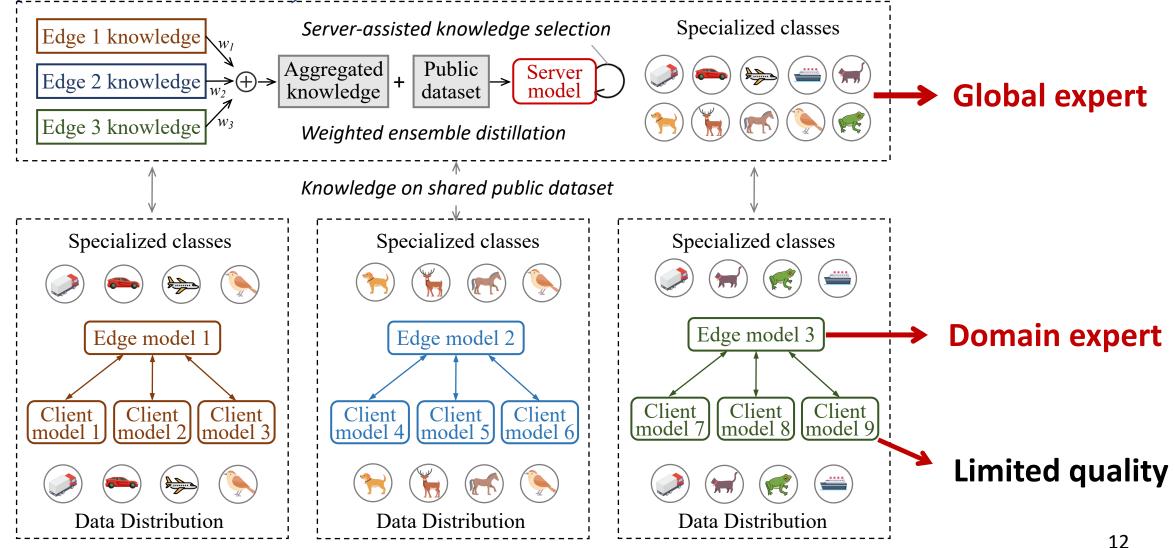
1. Knowledge from clients: limited quality

- The learning models of clients are small
- The training data size and categories of clients are limited

2. Knowledge fusion methods: limited efficacy

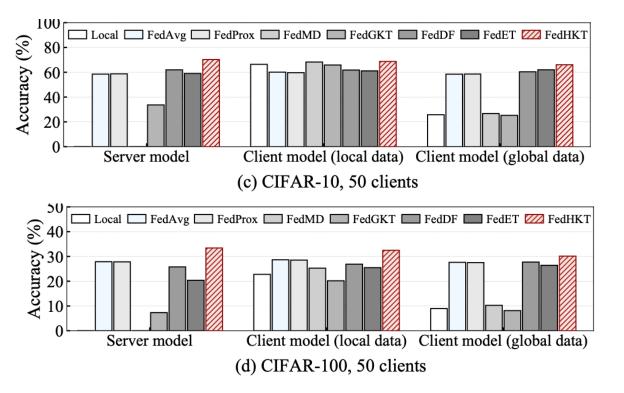
- Clients have diverse classification expertise on various labels of samples
- **Knowledge quality** provided by a client varies from samples
- Unlabeled public samples lack ground truths to evaluate knowledge quality

FedHKT: A Hierarchical Knowledge Transfer Framework for Heterogeneous Federated Learning (INFOCOM'23)



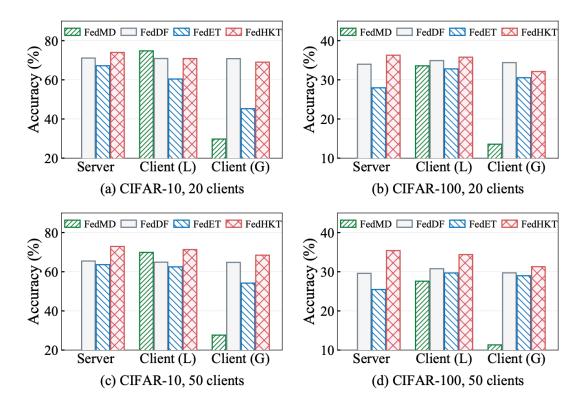
Evaluation Results

Homogeneous model settings



- Significant accuracy gain for server model
- Improved personalization and generalization performance for client model

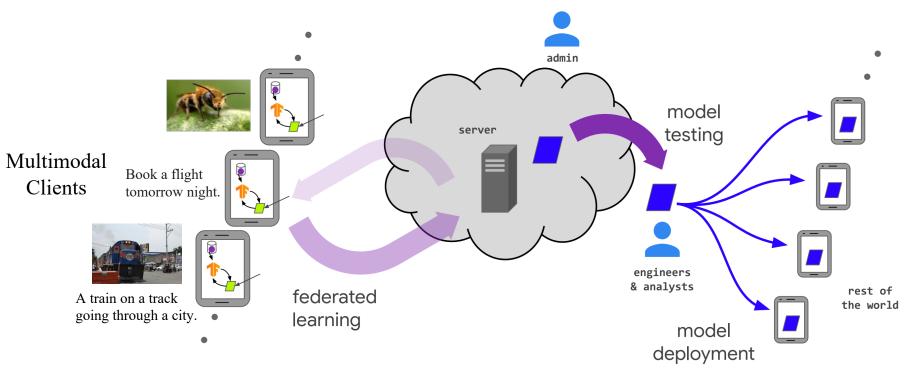
Heterogeneous model settings



 Efficient knowledge transfer between server model and heterogeneous client models

Multimodal Federated Learning

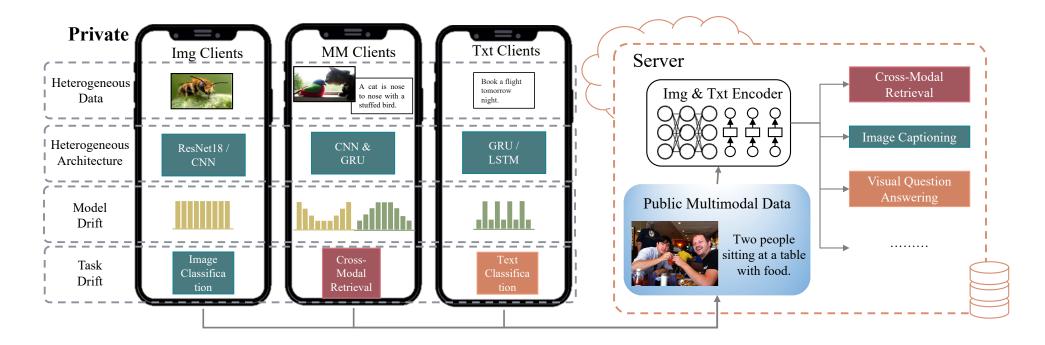
With the increasing amount of **multimedia** data on modern mobile systems and IoT infrastructures, harnessing these rich data without breaching user privacy becomes a critical issue.



• Figure adapted from "Advances and open problems in federated learning."

Challenges in Multimodal FL (MMFL)

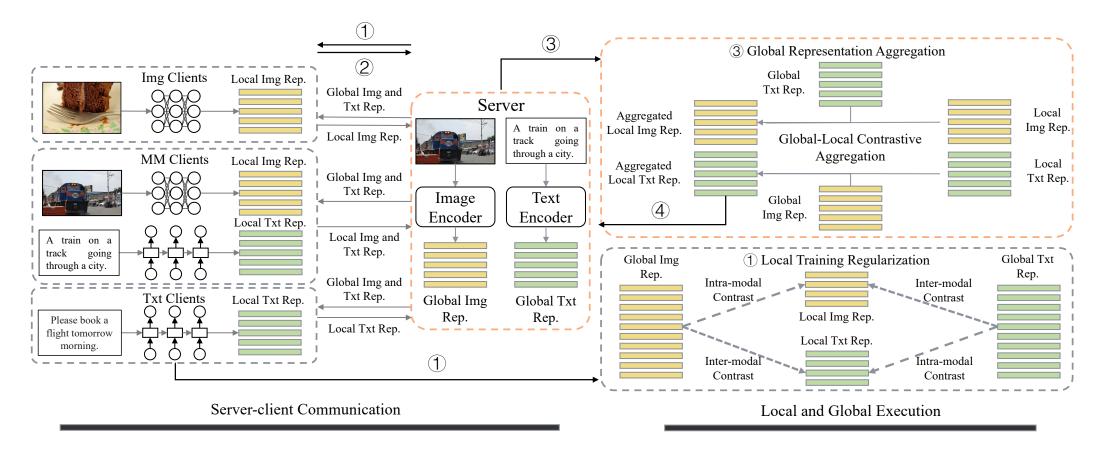
- Model drift: two new unprecedented heterogeneous factors arise from multimodal discrepancy, modality gap and task gap.
- Existing MMFL methods all adopt FedAvg framework by using homogeneous models for each modality, restraining the complexity of the global model to smaller scales.
- Existing algorithms for larger server model training rely on knowledge distillation through logit, which only limited to classification tasks and not suitable for representation-based tasks like retrieval.



Contrastive Representation Ensemble and Aggregation (CreamFL, ICLR 2023)

清華大学

CreamFL enables training larger server models from clients with heterogeneous model architectures and data modalities through representation ensemble transfer on public data, meanwhile effectively addressing the model drift challenge.



CreamFL: Global Contrastive Aggregation (GCA)

For global representations aggregation, we design a global-local cross-modal contrastive score for weighting purposes. The score for kth image of cth client is computed as:

$$s^{(k,c)} = \log rac{\exp\left(oldsymbol{i}_{ ext{local}}^{(k,c)^{ op}} \cdot oldsymbol{t}_{ ext{global}}^{(k)}
ight)}{\sum_{j=1}^{|\mathcal{P}|} \mathbf{1}_{[j
eq k]} \exp\left(oldsymbol{i}_{ ext{local}}^{(k,c)^{ op}} \cdot oldsymbol{t}_{ ext{global}}^{(j)}
ight)}$$

We assign a higher weight to the local representation $i_{local}^{(k,c)}$ that better matches its counterpart's global representation $t_{global}^{(k)}$ (nominator), and less approximates other texts $\underline{t}_{global}^{(j)}$, $j \neq k$ (denominator).

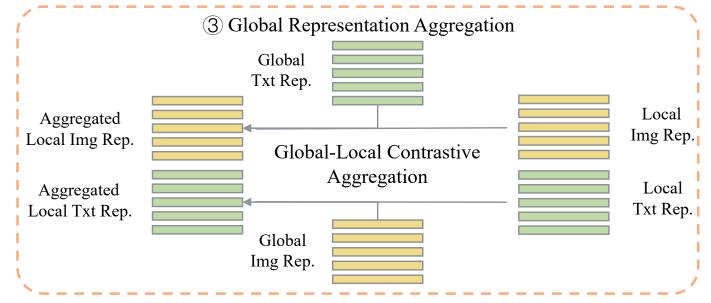


Table 1: Comparison of CreamFL with baselines on image-text retrieval task.

Settings:

- Public dataset: a subset of COCO
- Private datasets: CIFAR-100, AG_NEWS, Flicker30k
- Clients: 10 image clients, 10 text clients, 15 multimodal clients.
 10 of them are randomly chosen to participate in each round training.

CreamFL achieves noticeable performance improvement over all baselines in all settings.

	Types	Methods	1K Test Images							
	Types		i2t_R@1	i2t_R@5	i2t_R@10	t2i_R@1	t2i_R@5	t2i_R@10	R@1_sum	
	w/o larger	FedAvg	29.38	59.84	73.52	23.71	56.86	72.95	74.20	
	server model	FedIoT	28.62	59.90	73.82	23.36	58.14	74.55	72.15	
		FedMD	32.88	66.64	80.02	28.26	64.23	79.58	86.07	
		FedET	33.42	67.28	80.20	28.29	64.56	79.62	87.17	
	w/ larger	FedGEMS	34.44	67.52	80.50	28.73	64.82	80.00	88.92	
text	server model	reamFL+Avg	34.01	67.56	79.72	28.52	64.36	79.57	88.13	
		reamFL+IoT	33.90	66.28	80.18	28.44	64.70	80.03	88.05	
•		CreamFL (ours)	35.76	68.28	81.52	29.06	65.19	80.36	92.43	
sen	Types	Methods	5K Test Images							
	1,100	Wethous	i2t_R@1	i2t_R@5	i2t_R@10	t2i_R@1	t2i_R@5	t2i_R@10		
	w/o larger	FedAvg	11.86	31.46	44.08	9.25	26.82	39.02		
	server model	FedIoT	11.40	29.62	43.16	8.77	26.88	39.56		
		FedMD	13.24	35.50	48.90	11.69	32.58	46.46		
		FedET	13.68	36.62	49.70	11.78	32.73	46.26		
11	w/ larger	FedGEMS	13.94	37.32	50.78	11.81	33.01	46.54		
all	server model	reamFL+Avg	13.92	36.60	49.79	11.68	32.78	46.29		
		reamFL+IoT	14.06	36.58	49.14	11.65	33.01	46.64		
		CreamFL (ours)	15.08	37.86	51.56	12.53	33.63	47.23		

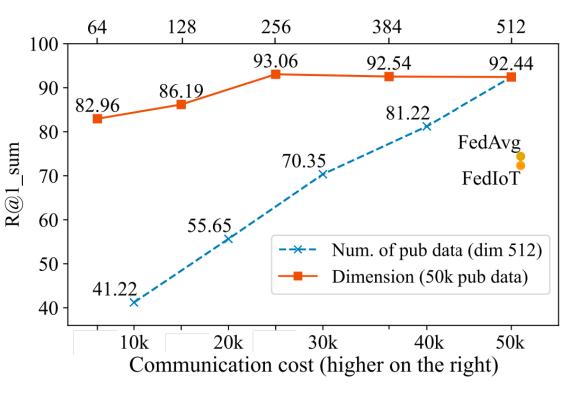
Experiments: Ablation

Ablation Studies for different components of CreamFL:

Methods	R@1_sum
reamFL+Mean	85.75
reamFL+Avg	88.13
reamFL+IoT	88.05
reamFL+GCA	90.03
reamFL+GCA + LCR.inter	91.98
reamFL+GCA + LCR.intra	90.84
CreamFL (reamFL+GCA+LCR)	92.43

GCA:global-local contrastive aggregation LCR: local contrastive regularization reamFL: vanilla representation ensemble (CreamFL without 'C')

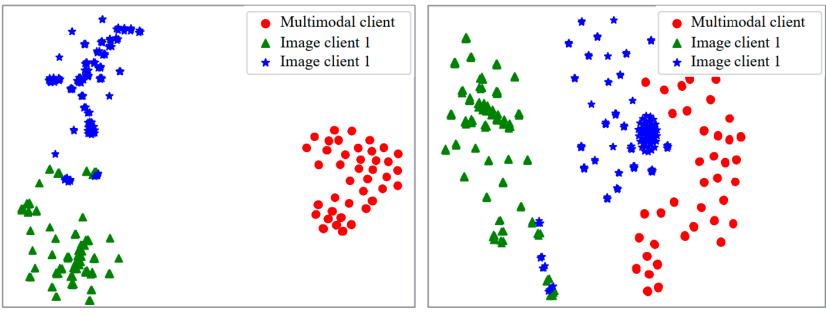
Trade-off between communication and performance:



Qualitative Study of Model Drift

Representations of 250 randomly chosen images from COCO are visualized.

Model drift exists between two modality-identical text clients (blue and green), while this drift is much smaller than the gap between multimodal and uni-modal clients (red v.s. blue+green)

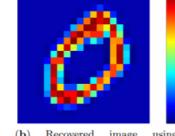


(a) Clients trained under vanilla reamFL+Mean

(b) Clients trained under CreamFL

 Qiying Yu, Yang Liu*, Yimu Wang, Ke Xu, Jingjing Liu*, Multimodal Federated Learning via Contrastive Representation Ensemble (ICLR 2023, code: https://github.com/FLAIR-THU/CreamFL)

Deep Leakage in Model Transfer FL



(a) Original 20x20 image of handwritten number 0, seen as a vector over \mathbb{R}^{400} fed to a neural network.

(b) Recovered image using 400/10285 (3.89%) gradients (see Sect.3, Example 2). The difference with the original (a) is only at the value bar.

(c) Recovered image 400/10285 (3.89%) gradients (see Sect.3, Example 3). There are noises but the truth label 0 can still be seen.

using

Fig. 3. Original data (a) vs. leakage information (b), (c) from a small part of gradients in a neural network.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. 2018. Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Trans. Information Forensics and Security, 13, 5 (2018),1333–1345

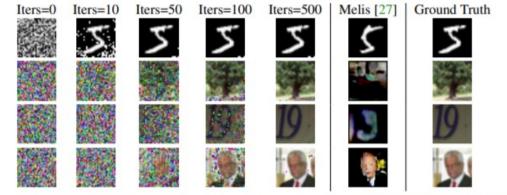


Figure 3: The visualization showing the deep leakage on images from MNIST [22], CIFAR-100 [21], SVHN [28] and LFW [14] respectively. Our algorithm fully recovers the four images while previous work only succeeds on simple images with clean backgrounds.

Ligeng Zhu, Zhijian Liu, Song Han, Deep Leakage from Gradients, Neurips 2019

Hongxu Yin et al, See through Gradients: Image Batch Recovery via GradInversion, CVPR 2021

Will there be *deep leakage from logits* in FedMD-like schemes?

Two necessary principles to attack FedMD

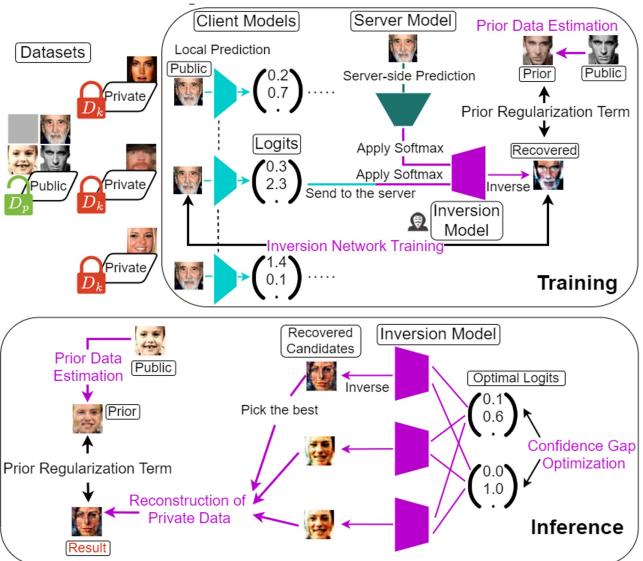
- Gradient-free
- Since gradients are <u>not</u> shared in FedMD, our attack cannot use gradients-related information
- Knowledge-decoupling
- Local models are trained on both private and public datasets,
- Our attack should recover only private data. (In the previous example, we do not want masked face)

None of existing methods meets both principles.

- Input is the predicted logits of server-side and client-side models on the public data
- Output is the original public data
- 2. Estimate output logits of serverside and client-side models on the target private data
- 3. Feed those estimated logits to the inversion NN to generate original private data
- 4. We also use prior generated from the public data for regularization

Hideaki Takahashi, Jingjing Liu, and Yang Liu, Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack (CVPR 2023)

Paired-Logits-Inversion Attack (PLI,CVPR'23)



PLI - Inversion Neural Network

1.Server-side and client-side logits are $l_i^0 = f_0(W_0; x_i^0), \quad l_i^k = f_k(W_k; x_i^0)$ 2. Next, we train an inversion neural network G with

$$\min_{\theta} \sum_{i} ||G_{\theta}(p_{i,\tau}^{0}, p_{i,\tau}^{k}) - x_{i}^{0}||_{2} + \gamma ||G_{\theta}(p_{i,\tau}^{0}, p_{i,\tau}^{k}) - \bar{x}_{i}||_{2}$$

$$p_{i,\tau}^0 = \operatorname{softmax}(\boldsymbol{l}_i^0, \tau), \quad p_{i,\tau}^k = \operatorname{softmax}(\boldsymbol{l}_i^k, \tau)$$

- the first term is reconstruction error

, where

- the second term is regularization term

PLI - Estimate output logits of private data using Confidence Gap Optimization

The quality of recovered image is a(k) = k = 0

 $Q(x_j^k) \coloneqq p_{\underline{j},\tau}^k + p_{\underline{j},\tau}^0 + \alpha H(p_{j,\tau}^0)$

Q is maximized with the bellow logits

$$\hat{p}_{\underline{u},\tau}^{k} = \begin{cases} 1 & (u=j) \\ 0 & (u\neq j) \end{cases}, \quad \hat{p}_{\underline{u},\tau}^{0} = \begin{cases} \frac{\sqrt[\alpha]{e}}{J-1+\sqrt[\alpha]{e}} & (u=j) \\ \frac{1}{J-1+\sqrt[\alpha]{e}} & (u\neq j) \end{cases}$$

Then, we can estimate the private data with

$$\underset{x_{j}^{k}}{\arg\max} Q(x_{j}^{k}) = G_{\theta}^{k}(\hat{p}_{j,\tau}^{0}, \hat{p}_{j,\tau}^{k})$$

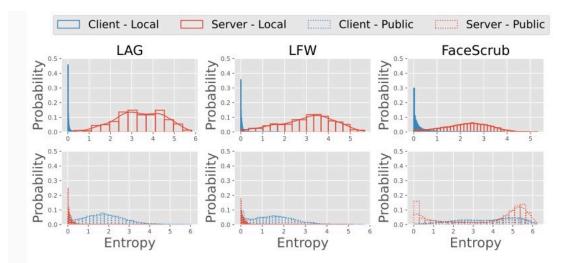
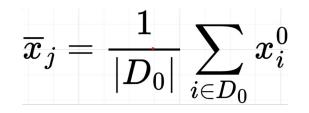


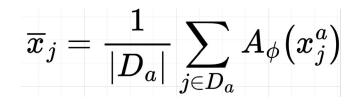
Figure 3. Confidence gap between the server and the client under FedMD setting on public and private data. This figure represents the normalized histogram of entropy on public and local datasets and estimated distribution. Lower entropy means that the model is more confident. Client consistently has higher confidence on private dataset than server, indicating a significant confidence gap.

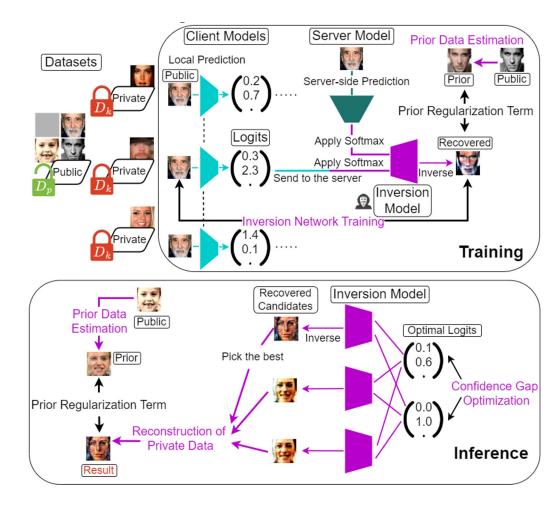
Prior Data Estimation

1.Naive Approach - same prior for all labels



1.GAN-based Translation Model - prior per label



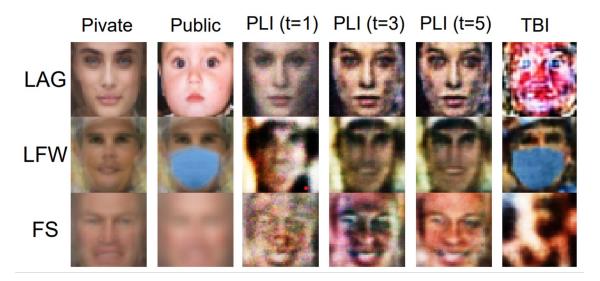


- 1. The attack is success when SSIM between the reconstructed image and the average private image of the target label exceeds SSIM between any average private/public images of other labels.
- 2.Our PLI outperforms the prior method in most settings.

Dataset	Dataset FaceScrub			LAG		LFW			
Scheme	DS-FL	FedGEMS	FedMD	DS-FL	FedGEMS	FedMD	DS-FL	FedGEMS	FedMD
TBI $(K = 1)$	87.0	1.0	92.5	70.0	0.5	16.5	73.5	2.5	2.0
PLI $(K = 1)$	91.5	29.0	94.0	71.0	17.0	60.0	99.5	91.0	99.5
TBI $(K = 10)$	2.0	0.5	7.0	6.5	0.0	0.0	17.5	9.5	10.0
PLI $(K = 10)$	62.5	20.0	74.5	15.0	26.5	63.5	15.5	71.5	79.0

Table 2. Results on attack accuracy (%).

Hideaki Takahashi, Jingjing Liu, and Yang Liu, Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack (CVPR 2023, code available at https://github.com/FLAIR-THU/PairedLogitsInversion)



t represents the number of communications.

Outline

I. Knowledge Transfer (KT)- Federated Learning (FL)

II. Addressing challenges in KD-based FL

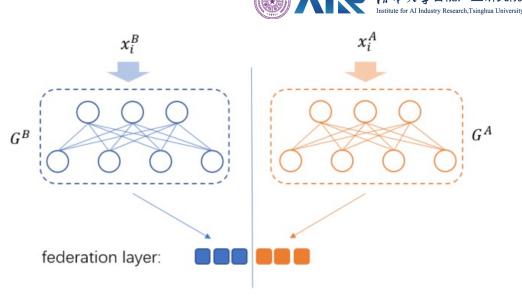
III. Vertical FL

Problem Definition for VFL

• The collaborative training problem is formulated:

$$\min_{\boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\Theta}; \mathcal{D}) \triangleq \frac{1}{N} \sum_{i=1}^{N} f(\theta_1, \dots, \theta_K; \mathcal{D}_i) + \lambda \sum_{k=1}^{K} \gamma(\theta_k)$$

$$f(\theta_1, \dots, \theta_K; \mathcal{D}_i) = f(\sum_{k=1}^K G^k(\mathbf{x}_i^k)\theta_k, y_i^K)$$



 G^k denotes local feature transformation function that is unknown to other parties

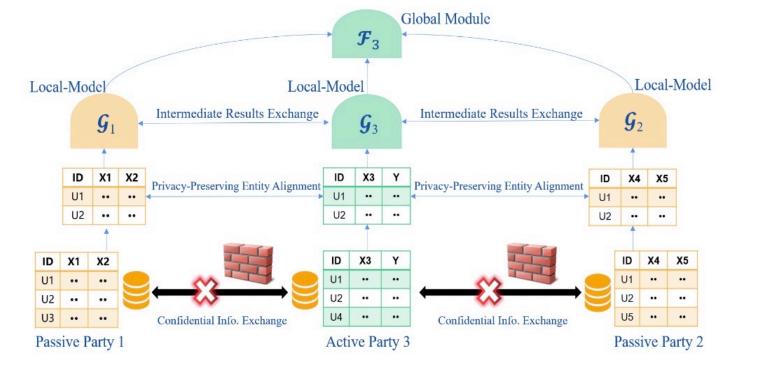
Assumptions:

- Features of the same sample are distributed across *K* parties.
- Samples referring to the same entity are aligned (by encrypted entity alignment techniques)
- Each party owns one part of a complete model
- Only one party has the label (the *Kth* party, "active' party)

Constraints:

• Model parameters and data stay local

Training Vertical Federated Learning

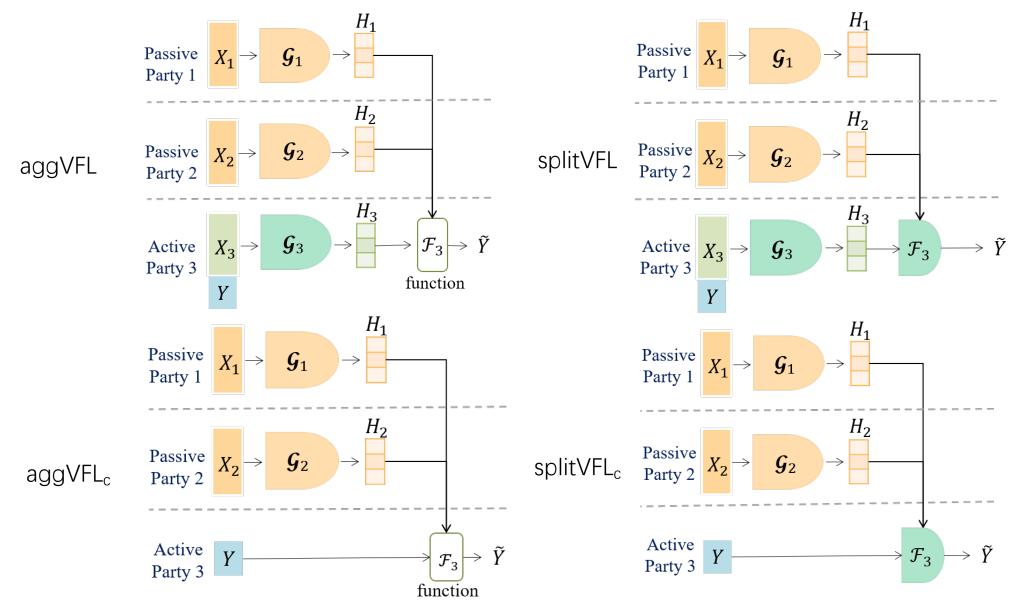


$$f(\boldsymbol{\Theta}; \mathbf{x}_{i}, y_{i}) = \mathcal{L}\left(\mathcal{F}_{K}\left(\psi_{K}; \mathcal{G}_{1}(\mathbf{x}_{i,1}, \theta_{1}), ..., \mathcal{G}_{K}(\mathbf{x}_{i,K}, \theta_{K})\right), y_{i,K}\right)$$

Algo	orithm 1 A General VFL Training Procedure.
Inpu	it : learning rates η_1 and η_2
Out	put : Model parameters $\theta_1, \theta_2 \dots \theta_K, \psi_K$
1: I	Party 1,2,,K, initialize $\theta_1, \theta_2, \dots, \theta_K, \psi_K$.
2: f	for each iteration $j = 1, 2, do$
3:	Randomly sample a mini-batch of samples $\mathbf{x} \subset \mathcal{D}$
4:	for each party $k=1,2,\ldots,K$ in parallel do
5:	Party k computes $H_k = \mathcal{G}_k(\mathbf{x}_k, \theta_k);$
6:	Party k sends $\{H_k\}$ to party K;
7:	end for
8:	Active party K updates $\psi_K^{j+1} = \psi_K^j - \eta_1 \frac{\partial \ell}{\partial \psi_K};$
9:	Active party K computes and sends $\frac{\partial \ell}{\partial H_k}$ to all other parties;
10:	for each party $k=1,2,\ldots,K$ in parallel do
11:	Party k computes $\nabla_{\theta_k} \ell$ with Equation (6);
12:	Party k updates $\theta_k^{j+1} = \theta_k^j - \eta_2 \nabla_{\theta_k} \ell;$
13:	end for
14: e	end for

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814

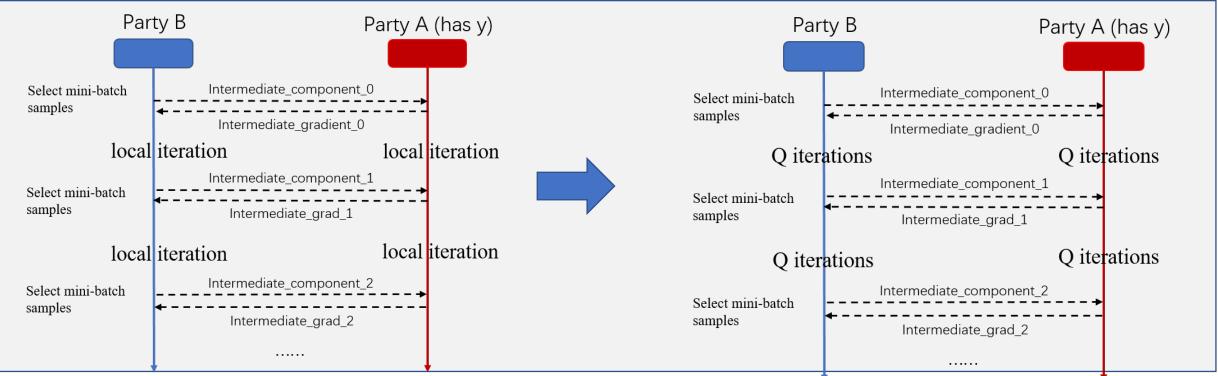
VFL Categorization



FedBCD: A FedAvg-like algorithm for VFL

FedSGD

FedBCD



- Communication at every round
- expensive especially when privacy-preserving protocol is applied.
- Each communication round, each party performs multiple local iterations,
- Each local iteration, each party locally computes gradient based on its own data and (staled) intermediate components from other parties in *the most recent synchronization*.

Y. Liu, Kang, X. Zhang, L. Li, Y. Cheng, T. Chen, M. Hong, Q. Yang, FedBCD: A Communication-Efficient Collaborative Learning Framework for Distributed Features, IEEE Transaction on Signal Processing, 2022

FedBCD: Main Results

	MI	MIMIC-LR AUC 84%		MNIST-CNN AUC 99.7%		
	AU					
Algo.	Q	rounds	Q	rounds		
FedSGD	1	334	1	46		
FedBCD	5	71	3	16		
2	50	52	5	8		
FedBCD-s	1	407	1	48		
8	5	74	3	15		
1	50	52	5	9		

NUMBER OF COMMUNICATION ROUNDS TO REACH A TARGET AUC FOR FEDBCD-P, FEDBCD-S AND FEDSGD ON MIMIC-LR AND MNIST-CNN RESPECTIVELY.

AUC	Algo.	Q	R	comp.	comm.	total
	FedSGD	1	17	11.33	11.34	22.67
70%	FedBCD	5	4	13.40	2.94	16.34
2020		10	2	10.87	2.74	13.61
	FedSGD	1	30	20.50	20.10	40.60
75%	FedBCD	5	8	26.78	5.57	32.35
		10	4	23.73	2.93	26.66
	FedSGD	1	46	32.20	30.69	62.89
80%	FedBCD	5	13	43.52	9.05	52.57
		10	7	41.53	5.12	46.65

NUMBER OF COMMUNICATION ROUNDS, COMPUTATION, COMMUNICATION AND TOTAL TRAINING TIME (MINS) TO REACH TARGET AUC FOR FEDSGD VERSUS FEDBCD-P.

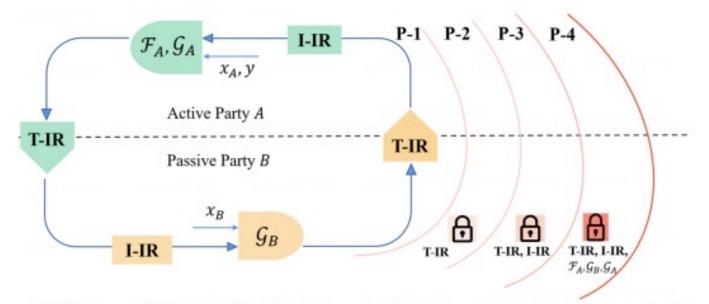
• The number of communication rounds required to reach ϵ

$$\frac{T}{Q} = \mathcal{O}\left(\frac{K^{1/2}}{S^{1/2}\epsilon^{3/2}}\right).$$

It is the first time that such rates have been proven for any algorithms with multiple local steps designed for the featurepartitioned federated learning problem

Compare with vanilla BCD, FedBCD saves communication by having multiple local updates

Security Protocols of VFL

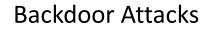


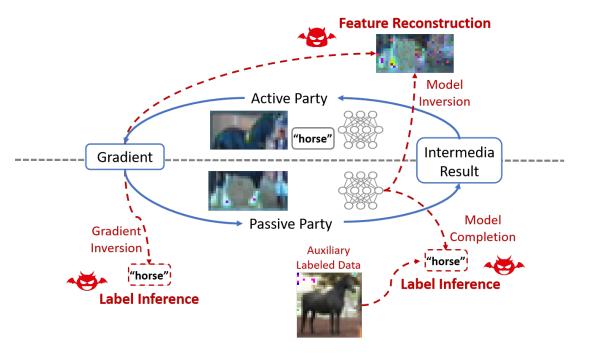
T-IR: Transmitted Intermediate Results (e.g., local model outputs and backward gradients) **I-IR:** Internal Intermediate Results (e.g., local trainable model parameters/gradients)

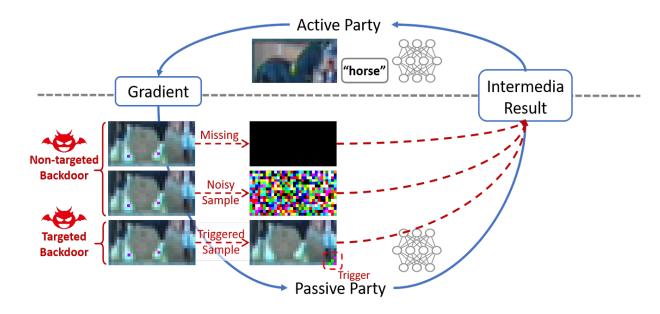
- Basic Protocol (P-1): Keeping Private data and models local.
- Standard Protocol (P-2): Protecting Exchanged Intermediate Results
- Enhanced Protocol (P-3): Protecting Entire Training Protocol
- Strict Protocol (P-4): Protecting Training Protocol and Results
- Relaxed Protocol (P-0): Nonprivate label or model.

Attacks and Defenses

Data Reconstruction Attacks







Summary of Attacks

		VFL		Against	Attacking	Auxiliary
	Attacking Method	Setting	Model	Protocol	Phase	Requirement
	Direct Label Inference (DLI) [19], [108]	aggVFL	NN	P-1	Training	-
	Norm Scoring (NS) [109]	splitVFL _c	NN	P-1	Training	-
Label	Direction Scoring (DS) [109]	splitVFL _c	NN	P-1	Training	-
Inference	Residual Reconstruction (RR) [110]	aggVFL	LR	P-2	Training	-
Attack	Gradient Inversion (GI) [108]	aggVFL	NN	P-2	Training	
	Gradient Inversion (GI) [111]	$\operatorname{splitVFL}_{c}$	NN	P-2	Training	Label Prior Distribution
	Passive Model Completion (PMC) [19]	splitVFL	NN	P-3	Inference	Labeled Data
	Active Model Completion (AMC) [19]	splitVFL	NN	P-3	Inference	Labeled Data
	Binary Feature Inference Attack (BFIA) [112]	splitVFL	NN	P-1	Training	Binary Features
	Reverse Multiplication Attack (RMA) [113]	aggVFL	LR	P-2	Training	Corrupted Coordinator
	Protocol-aware Active Attack(PAA) [114]	aggVFL	LR	P-2	Training	-
Feature	Reverse Sum Attack (RSA) [113]	aggVFL	GBDT	P-2	Training	-
Inference	Equality Solving Attack (ESA) [100]	aggVFL	LR	P-0(g)	Inference	-
Attack	Path Restriction Attack (PRA) [100]	aggVFL	Tree	P-0(g)	Inference	-
	Generative Regression Network (GRN) [100]	aggVFL	NN	P-0(g)	Inference	_
	White-Box Model Inversion (MI) [10], [102]	aggVFL & splitVFL	LR & NN	P-0(g)	Inference	-
	Black-box Model Inversion (MI) [101], [102]	aggVFL & splitVFL	LR & NN	P-1	Inference	Labeled Data
	Catastrophic Data Leakage in VFL (CAFE) [23]	aggVFL _c	NN	P-0(g)	Training	-

		VFL	Against	# of	Attacking	Auxiliary
	Attacking Method	Setting	Protocol	Classes	Phase	Requirement
Targeted	Label Replacement Backdoor by replacing gradients (LRB) [138]	aggVFL	P-2	≥ 2	Training	At least one label of clean samples
Backdor Attack	Adversarial Dominant Input attack (ADI) [139]	VLR/splitVFL _c	P-0(g)/P-1	≥ 2	Inference	a few samples from the other party
Non-targeted	Adversarial attack [24], [140]	splitVFL/aggVFL	P-1	≥ 2	Training	_
Backdoor Attack	Missing attack [24]	splitVFL/aggVFL	P-3	≥ 2	Training	-

Available online at

Yang Liu et al, Vertical Federated Learning, https://arxiv.org/abs/2211.12814

Summary of Defenses

Cryptographic Defense

Emerging Defense

Defense Work	VFL Setting	Model	Defense Scheme	Protocol	Party	Require Coordinator	Adversarial Assumption
GasconLR [17]	aggVFL	LR	GC+SS	P-3	> 2	1	SH
HardyLR [94]	aggVFL	LR	HE	P-2	≥ 2	1	SH
BaiduLR [107]	aggVFL	LR	HE	P-2	≥ 2	×	SH
SecureLR [108]	aggVFL	LR	HE+SS	P-2	≥ 2	×	SH
CAESAR [19]	aggVFL	LR	HE+SS	P-3	= 2	×	SH
HeteroLR [97]	aggVFL	LR	HE+SS	a :P-3, p :P-4	= 2	×	SH
FedV [21]	aggVFL	LR/SVM	FE	P-2	≥ 2	1	SH
SecureBoost [15]	aggVFL	XGB	HE	P-2	≥ 2	×	SH
SecureBoost+[33]	aggVFL	XGB	HE	P-2	≥ 2	×	SH
SecureXGB [35]	aggVFL	XGB	HE+SS	P-3	= 2	×	SH
MP-FedXGB [38]	aggVFL	XGB	SS	P-3	≥ 2	1	SH
SecureGBM [34]	aggVFL	LGBM	HE	P-2	= 2	×	SH
Pivot [39]	aggVFL	RF / GBDT	HE+SS	P-3	≥ 2	×	SH, $\leq K$ -1 colluded parties
Enhanced Pivot [39]	aggVFL	DT	HE+SS	P-4	≥ 2	×	SH, $\leq K-1$ colluded parties
FedSGC [109]	aggVFL _c	GNN	HE	P-2	= 2	×	SH
ACML [110]	splitVFL _c	NN	HE	P-1	= 2	×	SH
PrADA [79]	splitVFL	NN	HE	P-1	≥ 2	×	SH
BlindFL [96]	splitVFL	NN	HE+SS	a :P-2, p :P-4	= 2	×	SH
SFTL [77]	aggVFL	NN	HE	P-2	= 2	×	SH
SFTL [77]	aggVFL	NN	SS	P-3	= 2	×	SH
SEFTL [78]	aggVFL	NN	HE+SPDZ	P-3	= 2	×	MA, dishonest majority
N-TEE [111]	aggVFL	XGB	TEE	P-3	≥ 2	×	SH

	Defense Work	VFL Setting	Model	Defense Scheme	Against Attack	Defending Party
	MARVELL[98]	splitVFL _c	NN	Add Noise	NS, DS	Active party
1899 B	Max-Norm[98]	$splitVFL_c$	NN	Add Noise	NS, DS	Active party
Defenses against	CAE [30]	aggVFL	NN	HE+Disguise Label	DLI, MC	Active party
Label Inference Attack	DCAE [30]	aggVFL	NN	HE+Disguise Label+DG	DLI, MC	Active party
1	PELoss [113]	splitVFL _c	NN	Potential Energy Loss	MC	Active party
1	dCorr [101]	splitVFL	NN	Minimize Correlation	SA	Active party
1	RM [114]	aggVFL	LR	HE+Random Mask	RR	Active party
Defenses against	FG [28]	splitVFL	NN	Random Fake Gradients	CAFE	Passive part
Feature Inference Attack	DRAVL [115]	splitVFL _c	NN	Adversarial Training	MI	Passive part
	MD [102]	splitVFL	NN	Masquerade	BFIA	Passive part
Attack	DP-Paillier- MGD [104]	aggVFL	LR	HE+DP	PAA	Passive part

Table 9: Summary of defense strategies for defending against backdoor attacks.

Defense VFL Work Setting		Defense Scheme	Against Attack		
DP[30]	aggVFL	Add Noise	Targeted		
GS [30]	aggVFL	Sparsify Gradient	Targeted		
CAE [30]	aggVFL	HE+Disguise Label	Targeted		
DCAE [30]	aggVFL	HE+Disguise Label+DG	Targeted		
RVFR [29]	splitVFL	Robust Feature Sub-space Recovery	Targeted/Non-targeted		

Available online at

Applications

Major Applications

- Recommendation systems and Advertising
- Finance
- Healthcare
- Wireless Communication

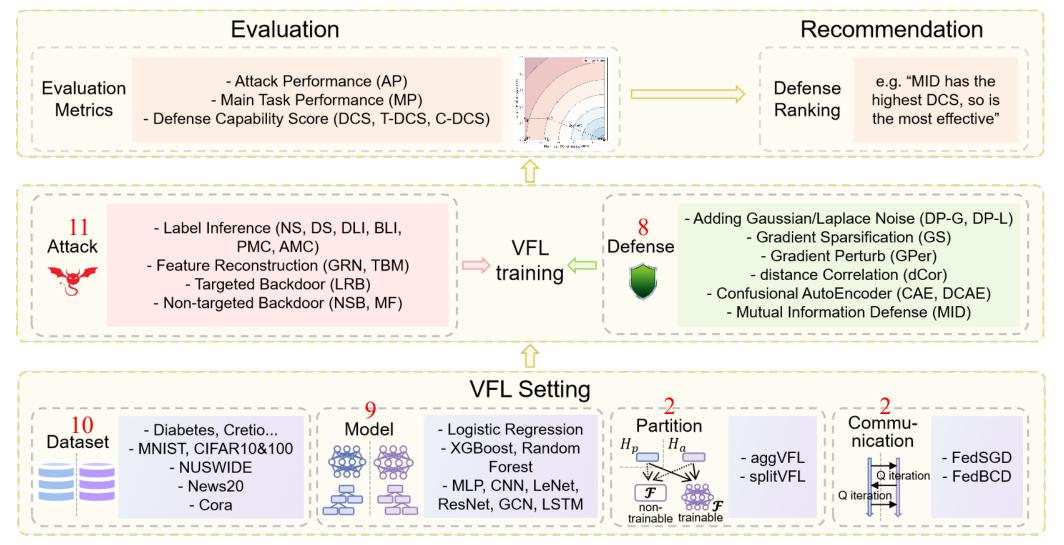
Open-Source Projects

- FATE
- PyVertical
- FedLearner
- FedML
- Fedtree
- PaddleFL

- A substantial gap between the defense goal of VFL research and practice.
 - <u>Research</u>: achieving state-of-the-art performance on a targeted attack type.
 - <u>Practice</u>: effective yet simple defense solutions to thwart all possible attacks.

• Lack a light-weight and unified VFL framework designed for rapid testing new attack and defense algorithms

GitHub Link: https://github.com/FLAIR-THU/VFLAIR



Evaluation Module

• Defense *Depth*

1) Attack Performance (AP), Main Task Performance (MP)

- ideal Attack Performance (AP*), ideal Main Task Performance (MP*)

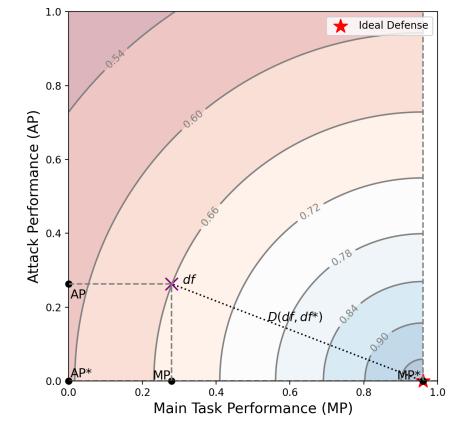
2) Defense Capability Score (DCS)

$$\text{DCS} = \frac{1}{1 + D(df, df^*)} = \frac{1}{1 + \sqrt{(1 - \beta)(\text{AP} - \text{AP}^*)^2 + \beta(\text{MP} - \text{MP}^*)^2}}$$

• Defense Breadth

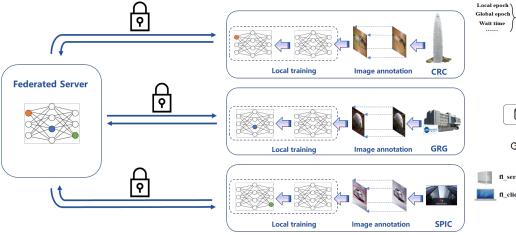
3) Type-level Defense Capability Score (T-DCS)4) Comprehensive Defense Capability Score (C-DCS)

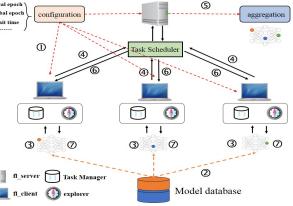
GitHub Link: https://github.com/FLAIR-THU/VFLAIR



1.4.6

An online visual object detection platform powered by federated learning





Advantages:

- privacy
- Efficiency improved by ~ 200 times
- reducing labor cost by 60%

